Motivation

• To first order, the size of extra-tropical storms is set by the Rossby radius of deformation, proportional to the atmospheric stratification divided by the Coriolis parameter.

• However, what sets the scale L at which convective activity organizes near the Equator, where the Coriolis parameter is small, remains an open question.

• Previous theories [3-4] predict the order of magnitude of L and some of its dependencies (surface temperature, boundary layer properties) by assuming a dominant mechanism.

• Here, we take an alternative approach by (1) formulating a budget for L and diagnosing contributions to its evolution from different processes in (2-8) 3D cloud-permitting sim. with interactive rad., surface fluxes & large-scale dyn. and (4) reanalysis data [5], satellite observations [6] & global cloud-permitting sim. [7-8].

How do radiation, surface enthalpy fluxes and advection contribute to the emergence and evolution of a dominant size for convective aggregation?

1. Theory

Budget for column frozen moist static energy (H)

Definition: H, a proxy for convective activity, is defined as the sum of column internal energy, potential energy and latent heat.

$$U = \int_0^h \rho g \left(\bar{H} + \frac{1}{
ho} \frac{d\rho}{dh} \int H \right) ds$$

Budget: H is conserved under vertical convective mixing and altered by the net energy flux through the col. boundaries: Longwave, shortwave, surf. fluxes & horizontal advection.

$$\frac{dH}{dt} = \int_{surface} \left(\phi_L \right) + \int_{radiation} \phi_s + \int_{surf} \phi_f + \int_{strat} \phi_h$$

Budget for spatial spectrum of moist static energy (ϕ)

Definition: ϕ, a measure of the scale-by-scale variance of H, is defined as the modulus of the spatial Fourier transform $\mathcal{F}H$.

$$\phi = |\mathcal{F}H|$$

Budget: ϕ is altered by the scale-by-scale coherence between H and energy fluxes; at each scale, variance is reinforced by positive coherences & destroyed by neg. coherences.

$$\frac{d\phi}{dt} = \sum_{k=1}^{K} \left(\phi_k \right) + \sum_{k=1}^{K} \phi_k \phi_k$$

Budget for convective-aggregation length scale (L)

Definition: L, the distance between pos. & neg. anomalies of H, is formally defined as the spectral mean of the wavelength, weighted by the spatial power spectrum ϕ of H.

$$L = \frac{1}{2} \sum_{k=1}^{K} \phi_k$$

Budget: L is altered by the expansion tendency of each energy flux, given by the product of the aggregation rate and a length scale factor which vanishes if fluxes operate at the scale L.

$$\frac{dL}{dt} = \frac{1}{2} \sum_{k=1}^{K} \left(\frac{\phi_k}{L_k} \right) \frac{dL_k}{dt}$$

2. Long-channel simulations

Measuring the convective-aggregation length scale (L)

Method: We simulate radiative-convective equilibrium in a long-channel domain [2] using the cloud-permitting model SAM [7] and measure the scale of West-East anomalies in time:

$$L = \frac{1}{2} \sum_{k=1}^{K} \phi_k$$

Understanding the evolution of L in time

3. Two-dimensional clusters

Measuring the size of convective clusters (L)

Method: We simulate radiative-convective equilibrium in a rotating square domain of Coriolis parameter 3×10^{-5} s$^{-1}$ and in a large non-rotating square domain [7]:

$$L = \frac{1}{2} \sum_{k=1}^{K} \phi_k$$

Understanding the evolution of L in time

4. Observed variability in Tropics

Measuring the scale of transient precipitable water anomalies (L)

Method: We average the observed [5] transients of precipitable water from South to North in the Tropics (e.g. 15S-15N) and focus on the scale of West-East anomalies in August 2016:

$$L = \frac{1}{2} \sum_{k=1}^{K} \phi_k$$

Understanding the evolution of L in time

Conclusions

1. We have developed a budget that relates the evolution of the convective-aggregation length scale to the vertically-integrated energy fluxes (radiative, surface, and advective).

2. Longwave cooling expands the convective-aggregation scale until convection aggregates.

3. Shortwave heating shrinks the convective-aggregation length scale.

4. Surface fluxes expand L when it is small & become main shrinking term when L is large.

5. Advection of energy expands L because it homogenizes small-scale convective anomalies.

6. We can generalize the definition and budget of L to two dimensions ($n=2$) and apply it to non-rotating convective clusters as well as tropical cyclones.

7. In the real Tropics, the budget can be used to understand the West-East scale of the transient zonal anomalies of precipitable water.

8. We can measure the effect of radiative and convective biases on the spatial organization of water vapor in the Tropics by comparing the L budget across models and observations.

Key References

2. Wing & Cronin (2016): Self-aggregation of convection in long-channel geometry. QJRMS.

Acknowledgments

- We thank Allison Wing for the long-channel & square sim. and Marat Khairoutdinov for the global CPM sim.

- Ansar: Allison Wing, Tristan Albert, Glenn Flur, Raffaele Ferrari, Santiago Benavides, Christopher Holloway.

- Funding: Tom Beucler was funded by NSF grant AGS-1520853 and Timothy Cronin by NSF grant AGS-1623218.